» » »

Building the next ubiquitous computing platform drawing on condensed matter physics - Livestream

Computing is at a momentous point today. AI, big data and decentralized work are driving a surging demand for computing power. At the same time, an ending of Moore’s Law and Dennard’s scaling are making it increasingly difficult (and expensive) to improve processor performance. The energy consumed by computing is therefore growing exponentially, doubling every 3 years, and could go on to consume as much as 25% of the world’s primary energy production in the next few decades if action is not taken to significantly improve computing energy efficiency [1]. The past decades improvements in computing, drawing from improvements in systems engineering, are not poised to deliver the demands of next decade.

A Unified Computing framework  translated to physical, complexity and thermodynamic axes :  In this talk, I will first outline a unified framework for reducing energy consumption whilst increasing compute performing, combining energy/dimension scaling (Moore’s law) with computer error rates (Shannon computing) and complexity (architectures), drawing from our Nature Physics perspective on Beyond CMOS computing with spin and polarization. Furthermore, we identify the key limiting factors for near-term computing: the utilization of logic inside a computing system (activity factor); the Turing wall to access stored data (memory bandwidth); and thermal extraction.

Next-generation computing with quantum materials : Building on this framework, I will describe a quantum and memory-materials-centric approach to enable beyond-CMOS computing, outline a number of pathways [3,4] for computing devices that utilize quantum materials.

Artificial General Intelligence and condensed matter physics: I will end by describing the potential ways to build the hardware for artificial general intelligence, overcoming the key interconnect, memory and compute bottlenecks, and the role that condensed matter physics needs to play.

The aim of this talk is to give an overview of the potential for using condensed matter to scale computing beyond-CMOS. I will generalize the search for the next ubiquitous computing device with a comprehensive list of quantum materials classes, and will highlight the top-10 outstanding problems that a condensed matter physicist can solve to address this generational goal.

Speaker: Sasikanth Manipatruni, Kepler Computing

See weblink for Zoom information.

Monday, 02/22/21


Website: Click to Visit



Save this Event:

Google Calendar
Yahoo! Calendar
Windows Live Calendar

UC Berkeley

, CA